# Distribuciones binomial y normal

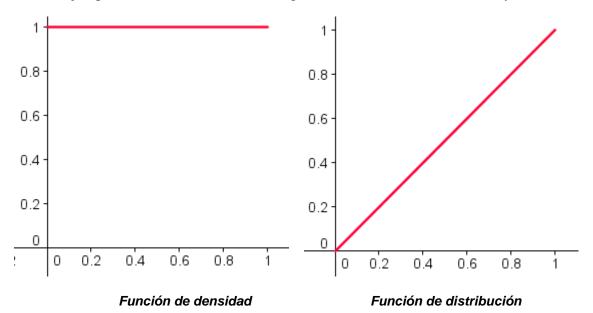
#### Variables aleatorias

- Variable aleatoria: función que a cada suceso elemental de un experimento aleatorio le hace corresponder un número.
- Parámetros: media, varianza y desviación típica. La diferencia es que se utiliza la probabilidad en vez de la frecuencia absoluta y que no se divide entre el número de datos.
- **Tipos de variables aleatorias**: discretas y continuas.
- **Distribución de probabilidad**: forma en que se asignan las probabilidades.

## Distribuciones discretas

- Las distribuciones discretas quedan determinadas de dos formas:
  - Función de probabilidad:  $f(x_i) = P(X = x_i)$
  - Función de distribución:  $F(x_i) = P(X \le x_i)$

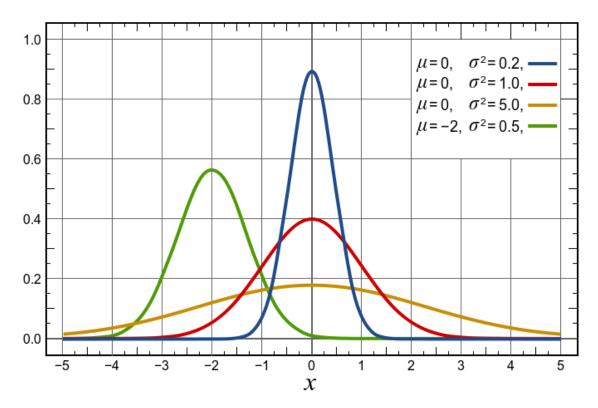
#### Distribución binomial:


- Es una distribución discreta.
- $X \equiv B(n, p)$ 
  - La variable X cuenta el número de veces que ocurre un suceso A al realizar el experimento n veces.
  - Depende de los parámetros n y p:
    - n = número de veces que se realiza el experimento.
    - P = probabilidad de que ocurra el suceso A.
  - o Los sucesos son independientes.
- Función de probabilidad:

$$f(i) = P(X = i) = \binom{n}{i} p^{i} (1 - p)^{n - i} \quad \left[ P_{n}^{i, n - i} = \frac{n!}{i!(n - i)!} = \binom{n}{i} \right]$$

- Cálculo de probabilidades
  - o Con la función.
  - o Con tablas.
- Sus parámetros estadísticos son:
  - $\circ \mu = np$
  - $\circ \quad \sigma = \sqrt{np(1-p)}$

## Distribuciones continuas


- Si la variable es continua, la probabilidad de un valor concreto es cero.
- Si la variable es continua, su distribución también lo es.
- Las distribuciones continuas quedan determinadas de dos formas:
  - o Función de densidad:
    - $f(x) \ge 0$
    - El área en cada intervalo da la probabilidad.
  - o Función de distribución:
    - $F(x) = P(X \le x)$
    - Es creciente.
- Ejemplo: variable aleatoria: se escoge al azar un número real entre 0 y 1.



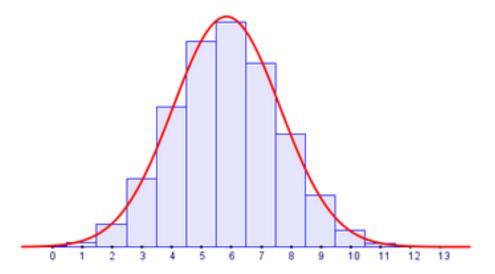
## Distribución normal

- Es una distribución continua.
- Su gráfica se llama campana de Gauss.
- $X \equiv N(\mu, \sigma)$ 
  - o La variable X es continua.
  - O Depende de los parámetros  $\mu$  y σ:
    - $\mu$  = media de la variable aleatoria.
    - $\sigma$  = desviación típica.
  - Su función de densidad es simétrica respecto de la media y viene dada por la fórmula:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$



- La más importante de todas estas distribuciones es Z = N(0,1)
- Tipificación: se trata de transformar variable en otra de media 0 y desviación típica 1.


$$\circ \quad x \to \frac{x - \mu}{\sigma}$$

- Cálculo de probabilidades: mediante tablas.
  - o Se tipifica la variable.
  - Se usan las tablas de Z = N(0,1).
  - La tabla da la probabilidad de que la variable Z sea menor o igual que cierto valor.

## Aproximación de la binomial

• Cuando n es suficientemente grande, la binomial se puede aproximar mediante una normal recordando que:

$$\begin{cases} \mu = np \\ \sigma = \sqrt{np(1-p)} \end{cases}$$



La línea roja corresponde a la función de densidad de una distribución normal. El gráfico de barras representa la función de probabilidad de una distribución binomial.

**Fuente**