\(\displaystyle\lim_{x \to \infty}{f(x)^{g(x)}}=\)
\(\displaystyle\lim_{x \to \infty}{(1+f(x)-1)^{g(x)}}=\)
\(\displaystyle\lim_{x \to \infty}{\left(1+\dfrac{1}{\dfrac{1}{f(x)-1}}\right)^{g(x)}}=\)
\(\displaystyle\lim_{x \to \infty}{\left(\left(\left(1+\dfrac{1}{\dfrac{1}{f(x)-1}}\right)^{\dfrac{1}{f(x)-1}}\right)^{f(x)-1}\right)^{g(x)}}=\lim_{x \to \infty}{\left(\left(1+\dfrac{1}{\dfrac{1}{f(x)-1}}\right)^{\dfrac{1}{f(x)-1}}\right)^{(f(x)-1)g(x)}}\ \ \ \ [1]\)
Sabemos que \(\displaystyle\lim_{x \to \infty}{\left(1+\dfrac{1}{h(x)}\right)^{h(x)}}=e\) siempre que \(\displaystyle\lim_{x \to \infty}{h(x)}=\infty\).
Como \(\displaystyle\lim_{x \to \infty}{f(x)}=1\), tenemos que \(\displaystyle\lim_{x \to \infty}{\dfrac{1}{f(x)-1}}=\infty\).
Por tanto, \(\displaystyle\lim_{x \to \infty}{\left(1+\dfrac{1}{\dfrac{1}{f(x)-1}}\right)^{\dfrac{1}{f(x)-1}}}=e\)